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Low Reynolds number shear flow past a rotating 
circular cylinder. Part 1. Momentum transfer 
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(Received 16 June 1969) 

The two-dimensional flow of an incompressible viscous fluid past a circular 
cylinder, symmetrically placed in a uniform shear field, is considered both 
theoretically and experimentally for small values of the shear Reynolds number. 
A series of angular rotational speeds is covered, each giving rise to a funda- 
mentally different flow pattern. It is shown first that the Stokes solution to this 
problem is not entirely consistent everywhere with the linear shear boundary 
condition which presumably exists far from the body. Using the method of inner 
and outer expansions, this solution is then improved by properly taking into 
account the first-order effects of the inertia terms, but, surprisingly, the stream- 
line structure in the outer region is still found to depart from that of the uniform 
shear sufficiently far away from the object. 

In  spite of the somewhat bizarre nature of the theoretical solution far from 
the cylinder, experimental studies clearly show, however, that it accurately 
represents the actual flow within the inner region over a wide range of cylinder 
rotation rates. 

1. Introduction 
Numerous investigations have appeared in the literature dealing with the 

motion of small objects suspended in a moving fluid, a subject of central im- 
portance to the field of particle dynamics. And yet, the large majority of these 
studies have been restricted to cases in which the particles, although in principle 
free to rotate and translate, were assumed to remain stationary relative to a 
suitably chosen co-ordinate system, the result being that many of the important 
phenomena arising as a consequence of particle rotation have remained largely 
unexplored. In  fact, the effects of particle rotation appear to have been con- 
sidered only rather recently, for example by Bretherton (1962), Saffman (1965), 
Cox, Zia & Mason (1968) and, for the case of heat transfer, by Frankel & Acrivos 
(1968). 

The present study considers in some detail a central problem in this general 
category, that of the steady, two-dimensional, low Reynolds number motion of 
an incompressible viscous fluid past a circular cylinder when the velocity at 
large distances is described by a uniform simple shear, and, in particular, the 
case in which the cylinder is placed symmetrically in the shear field so that the 
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lift and drag are identically zero. This problem was also treated theoretically 
by Bretherton (1962), who dealt primarily with the case in which the cylinder 
is assumed to translate relative to the centre of the shear field thereby experien- 
cing both drag and lift. Thus, although the theoretical part of the present work 
will be seen to parallel in some respects that of Bretherton’s, the respective 
solutions will be quite distinct unless the Reynolds number is identically zero. 
In  fact, as was already remarked by Bretherton, his analysis for finite Reynolds 
numbers ceases to apply when the slip velocity is made to vanish. Although, 
admittedly, the present case might seem rather specialized, it is of considerable 
interest in its own right in that it refers to the motion of a suspended neutrally 
buoyant particle which, at  steady state, cannot of course support a net force by 
the surrounding fluid. 

As was pointed out by Bretherton (1962), the present problem admits a Stokes 
solution, satisfying all the boundary conditions, for arbitrary rotational speeds 
of the cylinder. At first glance, this Stokes solution appears to be everywhere 
well behaved. However, upon closer examination, it will be shown to predict a 
flow pattern far from the cylinder which differs, in some important respects, 
from that of the imposed constant shear, thus creating some doubt as to whether 
the Stokes solution truly represents the flow field for vanishingly small Reynolds 
numbers. It was felt desirable, therefore, to investigate this problem somewhat 
further and in more detail for the purpose of developing a proper low-Reynolds- 
number asymptotic solution which would apply everywhere in the flow domain. 

As will be seen below, this was accomplished using the method of inner and 
outer expansions, according to which the flow field is thought of as consisting of 
two distinct but overlapping domains: an ‘inner ’ region, within which the inertia 
forces are small in comparison with the viscous terms, and an ‘outer’ region 
in which both inertia and viscous forces are of comparable magnitude. Separate 
solutions are then obtained for the two domains which are matched in the region 
of overlap. 

Following this procedure, appropriate inner and outer solutions were con- 
structed which will be shown to satisfy all the imposed boundary conditions and 
matching requirements. In  addition, the Stokes solution in the inner region was 
extended to include the kst-order correction terms arising from the presence of 
inertia. Nevertheless, it  will be shown that the flow pattern at  large distances from 
the cylinder still retains some of the peculiar features of the Stokes solution in 
that it includes a secondary motion which, although weak, is of sufficient mag- 
nitude to overshadow the uniform simple shear in certain regions of the far outer 
field. 

To test the theoretical predictions, an experimental programme was under- 
taken in which the flow past a circular cylinder symmetrically placed in a Iinear 
shear field was examined in considerable detail for small values of the Reynolds 
number. A series of cylinder rotational speeds were considered each giving rise 
to a fundamentally different streamline pattern. Although, owing to equipment 
limitations, attention had to be restricted to the inner region, it will be seen that, 
in every case studied, the experimental results were found to be in excellent 
agreement with the theoretical analysis based on the Stokes solution. 
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2. The Stokes solution 
In the absence of inertia terms, the Navier-Stokes equation in terms of the 

stream function $ reduces to 

As shown by Bretherton (1962), the appropriate solution satisfying the boundary 
conditions 

V4$= 0, r > 1. (1) 

= 0, uo = - a$/ar = - !J at r = 1, (2) 

$ --f +r2sin20 = &yz as r -+ 00, (3) 

(4) is 

where r and 0 are the usual cylindrical polar co-ordinates with the origin placed 
along y = 0, the line of symmetry of the undisturbed shear field. In  these and 
all subsequent expressions, the variables have been rendered dimensionless using 
a, the radius of the cylinder, as the characteristic length, and Xa as the charac- 
teristic velocity, with S being the value of the dimensional shear rate which 
applies far from the cylinder. As mentioned above, the present analysis will be 
restricted to the case in which the cylinder is placed symmetrically in the shear 
field so that both lift and drag are identically zero. Also, as can be verified by 
direct substitution, the speed of rotation Q is related to t, the dimensionless 
torque per unit length exerted by the fluid on the cylinder, by means of 

$(r, 8) = Qy2- ${2(1- 2Q)lnr+ 1 + ( [ l / r 2 ]  - 2 )  cos 201, 

where 

t = - (2rk/R) (1 - 2Q), 

R 5 Sa2/v 

is the Reynolds number of the motion, with v being the kinematic viscosity of 
the fluid. Clearly, in view of ( 5 ) ,  the dimensionless angular speed of a freely 
rotating cylinder is B = +. 

Up to now, it would seem that the general solution, as given by (4) for arbitrary 
rotational speeds a, has been accepted as a bona fide Stokes solution, falling 
into the same category as the familiar solutions for uniform creeping flow past 
a sphere or any other finite body, in the sense that all the imposed boundary 
conditions appear to have been satisfied exactly. Nevertheless, the behaviour 
of (4) for large values of r is sufficiently bizarre to warrant further attention. 
Thus, for r 9 1 and !J + 8, the creeping-flow solution reduces to 

9 --f &y2- Q( 1 - 2Q) In r ,  (7) 

which is seen to consist of two terms: the impressed uniform shear, and a ‘point- 
vortex’ flow which, although vanishingly small as r + 00, clearly dominates for 
small enough values of y. The consequences resulting from the presence of the 
logarithmic term in (7) are as follows: for 0 < !J < 9, (7) predicts the existence 
of two wakes, i.e. regions of negative 9, on either side of the cylinder, each having 
a width which increases with r as 

2((1--2Q)Inr)*. 

In  contrast, for !2 > +, all the streamlines given by (7) are easily shown to cross 
the x-axis, thereby suggesting that all the streamlines must close. 
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To be sure, the rather unexpected streamline pattern that arises, according 
to (7)) for sufficiently large r and Q =+ + may not appear, at  first glance, to be of 
any great significance since the velocities associated with the secondary motion 
are seen to decay as Y-1. Yet, the creeping flow solution would imply, for example, 
that, in the presence of a stationary cylinder, a fluid particle originally released 
anywhere within the wake x < 0 , O  < y < (In Y)&, Y % 1, would remain within the 
half-plane x < 0, and would eventually end up inside the quadrant x < O ,  
-(lnr)3 < y < 0. On the other hand, for > +, any fluid particle within the 
whole flow domain would, according to (4), circumvent the cylinder and return 
ultimately to its original position owing to the fact that all the streamlines are 
closed. Clearly, these particle paths, besides being in sharp contrast to those in 
a uniform simple shear, appear to be highly paradoxical, since they indicate that 
the presence of a small cylinder will exert a very real influence on the flow struc- 
ture throughout large regions of the domain, even those extending to infinity. 
Thus, it would seem that, for L2 =k 4, the behaviour of the creeping flow solution 
at large distances from the cylinder is incompatible with that of a real fluid 
system. 

The case L2 = 4, corresponding to a freely rotating cylinder, merits special 
attention. Here, the appropriate limit of (4) for large r and B -+ 0 (y fixed) is 

implying that r is finite, at y = 0, for 0 6 @ < f; consequently, all the stream- 
lines within this range of @ must eventually close. However, since the width of 
this region of closed streamlines vanishes with increasing r as 4(2) / r ,  whereas, 
from (S), q+ 3 4y2 + ‘4 for 9 > 4, it would appear that, for the special case SZ = 4, 
the condition of uniform shear at  infinity is satisfied everywhere by the Stokes 
solution. 

At any rate, for Q =t= 4, some fundamental questions remain regarding the 
validity of the Stokes solution far from the object. Admittedly, the seemingly 
paradoxical behaviour described earlier is rather mild when compared with some 
of the classical examples that have been treated in the literature, such as the 
well-known Stokes paradox for an infinite stationary cylinder in a uniform flow 
at vanishingly small Reynolds numbers. Nevertheless, it was felt desirable to 
try and resolve this matter. 

By analogy with most low Reynolds number problems of a similar type, it 
seemed logical to suppose at  the outset that the apparent inconsistency at  infinity 
could be removed if the inertia terms were taken into account, since inertial and 
viscous forces are of comparable magnitude at large distances from the object. 
Hence, the creeping flow analysis was extended to include the first-order con- 
tribution of these inertial effects. This was accomplished in a systematic way 
using the technique of inner and outer expansions as presented, for example, 
by Proudman & Pearson (1957) and by Bretherton (1962). 
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3. The solution for non-zero Reynolds numbers 
Following the well-established procedure of inner and outer expansions, we 

assume that as R -+ 0 the flow domain around the cylinder divides into two 
separate but overlapping regimes. In  the first, the so-called Stokes region, the 
stream function 11. satisfies 

with boundary conditions 

$ = 0, a$jar = Q at r = 1. 

In  the outer, or so-called Oseen, region the basic equation becomes 

ay avzy a'fr a v v  
a7 at a t  a7 ' 

v4yp=-__--__ 

with aY/ar -+ 7 as p -+ co, where, following Bretherton (1962), the strained co- 
ordinates 

( p , 8 )  = (Rb,8),  6 = Rtx, 7 = Riy, Y([,q) = Y(p,8) = R$(r,8) 

have been introduced. Clearly, (10) reflects the proper balance between the 
inertial and viscous forces which is presumed to exist at  large distances from the 
cylinder, i.e. for r > O(R-3). 

Next we seek a solution of the form 
m rn 

where 

and require that the two expressions for $ satisfying, respectively, (9) and (1 0) 
should match within the intermediate region r + co, p -+ 0. By inspection, the, 
first term of the outer solution is 

Yo@, 8) = Qr2 = &p2 sin2 8, 4 ( R )  = 1, 

whereas that for the inner expansion is the Stokes solution, (4), which, with 
fo(R) = 1, is seen to fulfil the matching requirement for sufficient small R. 

The next two terms of the outer solution are now determined by the form of 
$o(r, 8) which, within the overlap region, becomes 

R$o(r, 8) + ip2sin2B+ %Rln R( l -  2Q) - $R(2( 1 - 2Q)lnp + 1 - 2 cos 28>+ . . . . 
r+m 

(11 1 
Therefore, 

Y(R,p, 0) = +p2sin2 6'+ BRln R( l -  2Q) + RY&, 8) + . . . , 
where Yr2 can easily be seen to satisfy 

a 
a t  

r - (V2Y2) = V4Y2, V2Y2 -+ 0 as p --f co. (12) 

F L M  40 44 
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This will be recognized as an Oseen-type equation in which the equations of 
motion have been linearized about the uniform simple shear. 

As shown by Bretherton (1962)) the fundamental solution w of v(aw/aC) = V2w, 
having the required logarithmic singularity at  the origin, is 

with w + - lnp + 1.372 as p + 0. 
This of course is not quite the desired solution to the present problem) since, 

2 cos 26 
r2 ' 

owing to the fact that 
V T ,  = 1 - ~ 

a solution to (12) is being sought which, as p + 0, becomes 

2 cos 26 
V2yP2+--. 

P2 

cos 213 

However) noting that a2w/ac2 is also a solution to (12) and that 

lnp = -, a 2  

at2 P2 
-- 

it can be seen immediately that 

a particular solution to which, Yf, is (Bretherton 1962; Morse & Feshbach 1953) 

Although the integral appearing in (15) cannot be evaluated analytically, it 
is possible to obtain asymptotic expressions for Yf, for small and for large values 
ofp, which, as wiIl become apparent shortly) lead to a rather complete description 
of the flow field far from the cylinder as well as to an improved solution in the 
Stokes region. The detailed and rather involved mathematical manipulations 
leading to these asymptotic expressions have been given by Robertson (1969) 
and are available from the authors on request, so that only the results will be 
presented below. 

4. The Stokes region 

by (15), becomes, for small values of p, 
It can be shown, Robertson (1969)) that the asymptotic form of Yj, as given 

Yrg  = 4 cos 26 - 0.9101 + ip21np sin 26 - ~ ~ ( 0 . 0 7 2  16 - 0.08275 sin 26 

+ 0.08297 cos 26 -A sin 46) + O(p41np). (16) 

To this must be added the homogeneous solution of (14) 

Y"$ = - +( 1 - 2 0 )  1np + 0.6601 
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in order that the outer solution match with $o as given by (11). Therefore, the 
first three terms of the outer solution become 

Y = 4p2sin26+ iRlnR(1- 2Q) + R{ - &(l - 2 a )  lnp + 0.6601 + Yg)+ o(R). (17) 

Returning now to the inner region, we see that, owing to the presence of the 
p21np term in (16), the Stokes expansion must assume the form 

21. = $o+RlnR$l+R$2+o(R), (18) 

which, when substituted into (9), results in 

and 
V4@1 = 0, 

with boundary conditions @l, = 0, 
of (l6), the matching requirement yields the condition that 

and 

2/ar = 0 at r = 1. In  addition, because 

$l+&2sin26 as r + m ,  

+2 3 r2{&1n r sin 20 - 0.07216 + 0.08275 sin 26 - 0-08297 cos 20 + (sin 46)/96) 

as r+m.  
The appropriate solutions are (Robertson 1969) 

= &(r2-2+[l/r2])sin28 
and 

$2 = -0.07216(r2-21nr- 1)+ (0~08275sin26-0~08297cos28) 

(20) 

Therefore, the inner solution up to but not including terms O(R2lnR) is (18), 
with $o, +l and $2 given, respectively, by (4), (19) and (20). 

A bulk property of particular interest here is t, the dimensionless torque per 
unit length acting on the cylinder. This is given by 

where T is the dimensionless stress tensor, X any contour enclosing the cylinder 
and n the unit outer normal on the line element ds. Applying (21) on the surface 
of the cylinder, r = 1, and expressing T and u in terms of the stream function 
results in 

which, on account of (18), (4), (19) and (20), reduces to 

2nk 
R t = - - ( l -2~-0.2886R+O(R21nR)) .  

44-2 
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Therefore, the dimensionless angular speed Q for a freely rotating cylinder 
becomes Q = +[1-0.2886R+O(R21nR)], for t = 0. 

Clearly, these last two expressions indicate that the inclusion of inertia effects 
in the analysis leads to a lower torque and a lower rotational speed of the cylinder, 
relative t o  those obtained on the basis of the creeping flow solution alone. 

In  closing, it should be noted that (17) and (18), the two solutions obtained 
here for, respectively, the outer and inner regions, differ in a fundamental way 
from those developed by Bretherton (1962), which, owing to the presence of a 
finite cylinder velocity, were determined only to order RBln Rh. 

5. The Oseen region 
The successful matching between the first three terms of the inner solution 

and (17) gives rise to some confidence that the technique used to linearize the 
equations of motion in the outer region about the uniform simple shear solution 
is a valid one for small enough Reynolds numbers. Hence, it should be possible 
to obtain the structure of the far field by examining the asymptotic expansion 
of (17) as p + 00. As shown by Robertson (1969), this takes the form 

0.95 11 
Y = Qp2sin2 8+ iRlnR(1- 2Q) +R - ;( 1 - 2Q)Inp+ 0.6601 -1np -____ 

pb 

+O(RzInR). (22) 
1.5218 cos 28 2 sin 28 ____  

P2 
+ 

P$ 

Off hand, it would appear that the above expression might be incompatible 
with the requirement that angular momentum be conserved, since, if t is 
evaluated according to (21) by choosing for a contour a large circle of radius p + 1, 
the presence of the second logarithmic term in (22) will lead to an additional 
viscous contribution to the torque which is absent if (21) is computed on the 
surface of the cylinder using (4). Nevertheless, when the inertial part of (21) is 
taken into account, the interaction between the term in (22) involving sin20 
with the uniform shear leads to the only non-zero inertial contribution to t which 
exactly cancels the extra viscous term described above. Hence, (5) is recovered 
so that, in this respect at  any rate, (22) is a consistent result. 

What is very surprising about (22), however, is that at  large p 

Y + +v2- i R ( 3  - 2Q) lnp + gRlnR(1- ZQ) + 0-6601R, (23) 
P+Q= 

which is seen to be effectively identica1 with the large r expansion of the inner 
solution, equation (7), except for a difference in the coefficient of the logarithmic 
term. Thus, it is evident that all the peculiar features of the Stokes solution at  
large r ,  which were discussed in some detail in § 2, are still retained in the far 
outer field even when inertial effects are taken into account. In fact, when 
0 6 Q < $, the streamline pattern for p 9 1 is qualitatively similar to that in the 
Stokes region for 0 < Q < 3 and r + 1 ; likewise, for Q = $ and Q > $, the stream- 
lines in the outer flow have the same characteristic features as those in the inner 
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region when Q = 4 and SZ > 4, respectively. As before, these three angular speed 
ranges correspond to different signs in the coefficient of the logarithmic term; 
however, owing to the presence of the additional logarithmic term in (22), the 
angular speed required to completely eliminate the two wakes from the Oseen 
region is now SZ = #, rather than Q = + as was the case earlier with the Stokes 
solution. Thisindicates, for example, that, when !2 = +, the wakes will have been 
swept out from the inner into the outer region where they will still persist until 
SZ is increased to $, at which point the wakes will disappear altogether. 

It would appear, therefore, that, in the case of a truly two-dimensional flow 
past an infinite circular cylinder, one should not require the streamline structure 
at infinity to conform everywhere to that of a uniform simple shear, except when 
R = 8. However, since the magnitude of the secondary motion becomes ex- 
tremely small as p -+ co, the condition of constant vorticity a t  infinity will still 

apply. 

6. Experiments 
On the basis of past experience with other creeping flow phenomena, one would 

expect the Stokes solution to provide a very accurate representation of the actual 
flow pattern near the body for small, but non-zero Reynolds numbers. I n  fact, 
Cox, Zia & Mason (1968) have recently shown that, in the case of a freely rotating 
cylinder (Q = i), the three streamlines $ = 0.16, 1-67 and 0-25, the latter corre- 
sponding to the boundary of the closed streamline region, are given accurately 
in the neighbourhood of the cylinder (1  6 r < 2) by the appropriate creeping 
flow solution, (4). However, in view of some of the rather bizarre features of the 
theoretical solution described in earlier parts of this paper, it seemed desirable 
to experimentally investigate such flows in more detail, and, in particular, over 
a more extended region surrounding the cylinder and for a much wider range of 
rotational speeds SZ than had been attempted hitherto. 

Following is a description of the apparatus, the experimental techniques and 
the results. 

The shear flow apparatus 

One of the earliest accounts of the design and construction of an instrument solely 
for the purpose of generating a shear flow is due to Taylor (1923, 1934). Generally 
speaking, such a shear field may be achieved by means of a ‘parallel band’ 
apparatus, a ‘four-roller’ set-up, or a cylindrical Couette device. The latter has 
been used extensively in recent years by Mason (1951) to study a wide variety 
of problems involving particle motions in sheared suspensions (e.g. Darabaner, 
Raasch & Mason 1967). Also, Giesekus (1962) has investigated in a ‘four-roller 
apparatus’ the deformation of small particles bound together with flexible rods. 
Other applications, however, have been better served by the ‘parallel band’ 
set-up, as is evidenced by the work of Robertson (1959), Reichardt (1959), Dear- 
dorff (1963), and Kohlman & Mollo-Christensen (1965). 

After taking into consideration the advantages and disadvantages of the 
several types of shear flow generators, it was decided that the ‘parallel band’- 
type arrangement would be most compatible with the goals of the present research 
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programme. This led to the construction of the shear-flow apparatus shown in 
figure 1, which represents a larger and more flexible version of a similar device 
built by Kohlman (1963). 

The ‘band’ assembly consists of timing belts and timing pulleys, built on a 
tooth grip principle, in which the molded teeth of the oil-resistant rubber belt 
are designed to make positive engagement with the mating axial grooves on the 
pulleys. One primary advantage of using timing belt devices is their positive 

FIGURE 1. Experimental shear-flow apparatus. (1) Shear-flow tank. 10 ft. long, 2 ft. high, 
3.5ft. wide; legs, 37.5in. high; end windows, 14in. high, 20in. wide (viewing area); 
bottom window, 18 in. wide, 40 in. long (viewing area) ; material &- in. steel ; exterior and 
interior coated with coal tar epoxy. (2) Channel supports, steel. (3) Shock absorber, 
leveller. (4) Contour adjustors: arc segments from a 6 in. radius circular cylinder. (5) Gear- 
motor and gear reducer support. (6) + HP gearmotor. (7) Grooved aluminum disk (lac- 
quered). (8) Helical gear speed reducer. (9) Flexible shaft couplings. (10) 1.5 in. diameter 
stainless steel pulley shafts. (11) Timing belt pulley. (12) Timing belt (12 in. high). (13) 
Stainless steel belt support. (14) Stainless steel shafts. (15) Anodized aluminium bearing 
blocks. (16) Belt tensioning device. (17) Shaft locking assembly. (18) -& HP gearmotor. 
(19) Test object. (20) 1 in. thick lucite window. 
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traction characteristics which prevent any possibility of slippage, as might be 
found in a typical flat-belt crowned-pulley drive. 

Owing to the fact that the belts span a distance of almost 80in. it was necessary 
to provide support to prevent their sagging and bowing in the test section. This 
was accomplished by guiding the belt across a flat stainless steel sheet having 
overhanging grips on the top and bottom. 

As shown in figure 1, the entire belt and pulley assembly is supported in such 
a manner that it is free to move in a transverse direction thereby providing for 
a continuously variable gap width. Once the width is established, the assembly 
may be locked in place. 

Performance characteristics of the shear-JEow apparatus 

Following the design and construction of the shear-flow apparatus, an experi- 
mental programme was initiated to quantitatively define the behaviour of the 
flow fields which could be generated. Of prime interest in this study was the case 
in which the belts were set to move in opposite directions at  equal speeds, since, 
ideally, this should give rise to a linear shear flow within the test section. 

As shown in figure 1 the tank was partially filled with water, on which was 
floated a highly water insoluble viscous Newtonian polymer, Polybutene no. 8. 
The purpose for this was to minimize the presence of vertical velocity gradients 
in the polymer, thereby enhancing the two-dimensionality of the flow in the 
test section. 

Each gearmotor was connected to solid state variable speed controllers which 
provided extremely close speed regulation of the belts. Furthermore, the belt 
velocity was constantly monitored by observing to what extent the degree of 
synchronization could be maintained between an electronic strobotac and a 
grooved disk which, as shown in figure 1, was fastened to each gearmotor shaft. 

Prior to measuring velocity profiles quantitatively, a number of rather general 
qualitative observations were made in order to establish the gross character of 
the flows generated by the apparatus. To accomplish this, a mount was con- 
structed on which a camera was placed in such a way that the motion in the 
polymer could be photographed from above, as shown in figure 1. The camera 
lens was kept parallel to the fluid surface and could be adjusted to any desired 
height. This made it possible to obtain photographs at  all levels in the tank, from 
the air interface all the way down to the water interface. By sweeping a small 
piece of fine mesh stainless steel screen through the test section, a large number of 
very tiny bubbles were produced, which in the viscous polymer ( N 2-3 poise) 
had such an extremely small rate of rise, that they could be used conveniently 
as tracers for obtaining streaklines and velocity profiles. This was accomplished 
by taking time exposure photographs of these bubbles with the aid of illumina- 
tion, at  right-angles to the camera lens, produced by synchronized electronic 
strobotacs placed at each end window. 

A typical photograph of the streamline patterns generated by the shear-flow 
apparatus is shown in figure 2 (plate 1). Here a dark circle corresponding to a 
+in. diameter has been superimposed on the picture in order to give an idea of 
how the scale of the flow field compares to the size of the cylinder used in the 
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experiments. Also, it represents the geometric centre of the tank when viewed 
from above. The gap width is about 22 in., hence, the photograph spans approxi- 
mately half the test section. Clearly, although the flow is parallel to the belts 
away from the centre of the t,ank, it appears to possess a transverse velocity 
component close to the ideal location of the stagnation streamline. Fortunately, 
it  will be seen that the presence of these secondary motions which, as shown by 
Robertson (1969), are due to end effects, is of little consequence. since the 
corresponding velocities are extremely weak. 

Velocity profiles 

Using the bubble-strobotac technique, velocity profiles were obtained at  two 
different heights in the polymer. The results, shown in figures 3 and 4, provide 
good evidence that the velocity profile is very linear at  the centre of the test 

Y’lH 
FIGURE 3. Velocity profile: 1.5 in. below polymer surface, 2UBH/v = 158. 

section, and is in fact independent of vertical location. These measurements are 
for an aspect ratio A of 2, where 

L being the test section half-length, and H the gap width. 
These results certainly demonstrate the pronounced effectiveness of the 

aqueous layer in helping to generate a truly two-dimensional flow. Furthermore, 
they strongly indicate that the presence of crossflow has a negligible effect on the 
longitudinal velocity component and that any noticeable curvature of the stream- 
line paths over the region of the test field could not be detected when measuring 
velocities. Therefore, with reference to future experiments, one would expect 

A = LIH,  
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that an object placed a t  the geometric centre of the apparatus would find itself in 
an environment which, for all intents and purposes, would be identical locally to 
the idealized dimensional linear shear flow 

u = U,(1- 2y' /H),  
where y' is the dimensional transverse distance measured from one of the belts 
and U, is the speed of the belts. 
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FIGITRE 4. Velocity profile: 6.5 in. below polymer surface, 2UBH/v = 158. 

Shear $ow past a circular cylinder 

The cylinder used in these experiments was fabricated from a +in. diameter 
aluminium rod and was placed in the apparatus as shown in figure 1. At the 
bottom-viewing window, it passed through a rotating seal and then engaged a 
timing-belt drive system, while at  the top, it passed through the centre of an 
8 x 8in. piece of lucite, which in turn was fastened to  two aluminium support 
bars spanning the width of the tank. No bearing or other device to permit ease 
of rotation was fitted into the lucite; the rod simply revolved against the lucite 
surface to which a thin coat of machine oil had been applied. I n  this way, photo- 
graphs could be taken from above without having any obstructions present t o  
obscure the flow patterns. 

The experiments covered the range of cylinder Reynolds numbers 

6 x  < R < 0-7, 

Also, in all cases to be described, H was set equal to 19-Sin. 
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(i) 52 = 0. Shown in figure 5 (plate 2 )  is a typical photograph of the experi- 
mental streamline patterns for a stationary cylinder, obtained by means of the 
techniques described above. In turn, these photographs were magnified and then 
used to effect a comparison between experimentally observed and theoretically 
predicted streamlines. Thus, a particular tracer bubble was first selected, its co- 
ordinates with respect to the centre of the cylinder were determined along its 

FIGURE 6. Comparison between theory and experiment for the shear 
flow past a stationary circular cylinder, R = 0. 

@ 
w- 

e = o o ,  180" 

- 0.005 
- 0,Ol 
- 0.04 
- 0.10 
- 0.19 
- 0.28 

0 (surface) 

7 

0 = go", 270' 
0 (surface) 

0.01 
0-06 
0.11 
0.18 
0.53 

TABLE 1. Values of the stream function for the theoretical streamlines shown in figure 6 

path and a value for the stream function corresponding to that particular stream- 
line was assigned by averaging the individual values of $ computed according to 
(4). The data were then superimposed on the theoretical streamline as given by (4) 
using this same value for the streamfunction $. The results are shown in figure 6. 
Here, the dashed lines represent the theoretical streamlines, for which the corre- 
sponding values of the stream function are given in table 1 in ascending order 
along the x and y axes. 

Undoubtedly the most prominent feature of this flow is the appearance of 
two recirculating wakes on either side of the cylinder. As shown in figure 6, the 
theoretical $ = 0 streamline intersects the cylinder surface at 8 = -t 30°, a pre- 
diction which is obviously borne out by figure 5. Clearly, the theoretical and 
experimental streamlines are in excellent agreement throughout the flow field 
covered by the photographs. 



Low Reynolds number shear $ow. Part 1 699 

(ii) !2 = a. When the rotational speed of the cylinder falls into the range 
0 < !2 < 9,  a fundamental change in the structure of the flow field occurs due 
to the appearance of a region of closed streamlines which surround the object. 
This is evident from the theoretical streamline patterns depicted in figure 7 for 

_/-- 

-. 

I ---- 

/--- ___------ 
---z _____ I _____-- ---- --- ---_ ----___ .- -- --- -- 

FIGURE 7. Theoretical streamlines for the shear flow past a rotating 
circular cylinder, C l  = 4. 

0 = 0", 180" e = 900,2700 
0 (surface) 0 (surface) 
0.020 0.020 
0.038 0.038 
0.03836. . . (Stag- 0-050 

0.020 0.010 
0 0.40 

nation point) 

-0.10 

TABLE 2. Values of the stream function for the theoretical streamlines shown in figure 7 ; 
note that the streamline which is only partially visible near the stagnation point corre- 
sponds to 9 = 0.039 

!2 = a. Values of the stream function corresponding to these theoretical stream- 
lines, which cross the x and y axes in an ascending order, are listed above in 
table 2. 

It should be noted that, by virtue of the rotation of the cylinder, the wake 
regions have been displaced from the surface of the object; however, on account 
of (7), their width is still proportional to (1nr)S for r sufficiently large. Unfor- 
tunately, owing to the presence of the stagnation points in this flow, it was not 
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possible t o  obtain quantitative data using the present experimental techniques 
since the bubble tracers tended to rise in regions where the fluid velocities were 
small. However, as shown in figure 8 (plate 3), the observed flow structure is in 

------- 

L 

FIGURE 10. Comparison between theory and experiment for the shear 
flow past a freely rotating circular cylinder, = +. 

II. 
v-- 
0 (surface) 

0.050 
0.065 
0.10 
0.15 
0.17 
0.18 
0.22 
0.25 

7 

0.70 

0.81 
1.01 
1.48 
1.63 
1.93 
3.86 
4.16 

TARLE 3. Value of the stream function for the stream lines shown in figure 10 

good qualitative agreement with the theoretical predictions in that it can be seen 
to possess the same important features depicted in figure 7, namely, the wakes, 
the region of closed streamlines, and, barely visible, the two stagnation points. 

(iii) i2 = fr. Shown in figure 9 (plate 4) is a typical experimental streamline 
pattern which resulted when SZ was set equal to 8,  the value corresponding to 
free rotation. As in (i), such pictures were used to  compute point values of the 
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stream function along a given bubble path which, in most cases, were found to 
be within a few per cent of the experimentally obtained mean value for a given 
streamline. The results of such measurements, which are more extensive than 
those reported by Cox et al. (1968) in that they include more streamlines and a 
substantially larger area surrounding the cylinder, are shown in figure 10  where 
the dashed lines represent once again the streamlines given by the Stokes solution 
to this problem (4). The value of the stream function for each streamline in 
ascending order is given in table 3. 

t I I I I 

2.0 

n I I 
" 
1.0 1.5 2.0 2.5 3.0 3-5 4.0 

r 

FIGURE 11. Measured values of the speed q for a = g. 

Clearly the agreement between theory and experiment is excellent. However, 
a somewhat more sensitive test involves the comparison between theoretically 
and experimentally determined speeds along a given streamline. To this end, 
local values of the speed were measured at  angular increments of 45" from the 
same photographs used in obtaining the data presented in figure 10. The results 
are shown in figure 11, where the solid lines represent the theoretical values of 
the speed q, as computed from (4). 

Similar symbols on the figure refer to data that were obtained from the same 
streamline. 

The excellent agreement between theory and experiment indicate, of course, 
that the tracer bubbles were moving with the theoretical speed along their entire 
path, for streamlines both outside and inside the circulating region. This agree- 
ment is all the more satisfying considering that the measured value of the speed 
was actually an average quantity taken over several degrees of arc. 

= 2. When the speed of the cylinder was allowed to exceed that required 
for free rotation, Q > $, the resulting experimental flow pattern wag as shown in 
figure 12 (plate 5). Again, as seen in figure 13, there is complete agreement be- 
tween the theory, represented as dashed lines, and the experimental data. 

(iv) 
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Values of the stream function corresponding to the streamlines in figure 13 are 
given in table 4 in ascending order along the y axis. 

As in the !2 = & case, speeds were also measured along streamlines at 45' in- 
crements. These results are presented in figure 14, where again the solid lines refer 
to the speeds as given by the creeping flow solution (4). Once more, like symbols 
identify data that were obtained from the same streamline. Clearly, as before, 
the comparison between experiment and theory is excellent. 

T3 

F'IGURE 13. Comparison between theory and experiment for the shear 
flow past a rotating circular cylinder, R = #. 

lk 
e = 900 

r 
0 (surface) 1-32 
0.21 1-43 
0.79 2-44 
1.14 3.92 

TABLE 4. Values of the stream function for the streamlines shown in figure 13 

A > 

In conclusion, the experimental evidence which has been presented shows that 
the Stokes solution accurately describes the two-dimensional low Reynolds 
number flow past a circular cylinder for arbitrary rotational speeds when the 
motion at  infinity is a uniform simple shear. However, this experimental verifica- 
tion applies only to the inner region, since the presence of end effects in the 
shear-flow apparatus made it impossible to obtain even a qualitative investiga- 
tion of the structure of regions far from the cylinder. Fortunately, though, as 
shown in 0 5, many important aspects of the nature of the flow in the Oseen region 
have been clarified by analytically investigating the problem through the use 
of the technique of matched asymptotic expansions. 
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FIGURE 14. Measured values of the speed q for Q = 4, 
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FIGURE 2. Test section streamline patterns in the absence of a test 
object. (Belt velocity: UB = 3.0 in./sec.) 
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FIGURE 5. Shear flow past a stationary circular cylinder, !2 = 0, R = 0,047. 
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FIGURE 8. Shear flow past a rotating circular cylinder, C2 = $, R = 0.047. 
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FIGURE 9. Shear flow past a freely rotating circular cylinder, 0 = 4, R = 0.047. 
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FIGURE 12. Shear flow past a rotating circular cylinder, SZ = 8, R = 0.047. 
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Plate 5 


